24”/61cm Halloween Skeleton Decoration with Red LED Eyes Full Body Human Plastic Bones with Posable Joints Skeleton for Halloween Party Indoor Outdoor Decor, Haunted House Graveyard Decoration

£9.9
FREE Shipping

24”/61cm Halloween Skeleton Decoration with Red LED Eyes Full Body Human Plastic Bones with Posable Joints Skeleton for Halloween Party Indoor Outdoor Decor, Haunted House Graveyard Decoration

24”/61cm Halloween Skeleton Decoration with Red LED Eyes Full Body Human Plastic Bones with Posable Joints Skeleton for Halloween Party Indoor Outdoor Decor, Haunted House Graveyard Decoration

RRP: £99
Price: £9.9
£9.9 FREE Shipping

In stock

We accept the following payment methods

Description

Tempting as it is to blame a global pandemic on an ancient curse, the theory has one significant hole: The skeleton was discovered 15 years ago. Formed by the left and right hip bones, the pelvic girdle connects the lower limb (leg) bones to the axial skeleton. The tibia and fibula are the bones of the lower leg. The tibia is much larger than the fibula and bears almost all of the body’s weight. The fibula is mainly a muscle attachment point and is used to help maintain balance. The tibia and fibula form the ankle joint with the talus, one of the seven tarsal bones in the foot. The tarsals are a group of seven small bones that form the posterior end of the foot and heel. The tarsals form joints with the five long metatarsals of the foot. Then each of the metatarsals forms a joint with one of the set of phalanges in the toes. Each toe has three phalanges, except for the big toe, which only has two phalanges. Microscopic Structure of Bones

Immediately inferior to the internal acoustic meatus is the large, irregularly shaped jugular foramen (see Figure 7.8 a). Several cranial nerves from the brain exit the skull via this opening. It is also the exit point through the base of the skull for all the venous return blood leaving the brain. The venous structures that carry blood inside the skull form large, curved grooves on the inner walls of the posterior cranial fossa, which terminate at each jugular foramen. Paranasal Sinuses While neither postssaywhen the skeleton was uncovered, social media users tookthe news as a recent discovery. Located on the medial wall of the petrous ridge in the posterior cranial fossa is the internal acoustic meatus (see Figure 7.11). This opening provides for passage of the nerve from the hearing and equilibrium organs of the inner ear, and the nerve that supplies the muscles of the face. Located at the anterior-lateral margin of the foramen magnum is the hypoglossal canal. These emerge on the inferior aspect of the skull at the base of the occipital condyle and provide passage for an important nerve to the tongue. Do. Not. Remove. The. Golden. Eye. From. The. Unnaturally. Large. Holy. Woman's. SKELETON. Please," reads text in an Aug. 6 Facebook post, which shows a screenshot of a July 13 tweet. The middle cranial fossa is deeper and situated posterior to the anterior fossa. It extends from the lesser wings of the sphenoid bone anteriorly, to the petrous ridges (petrous portion of the temporal bones) posteriorly. The large, diagonally positioned petrous ridges give the middle cranial fossa a butterfly shape, making it narrow at the midline and broad laterally. The temporal lobes of the brain occupy this fossa. The middle cranial fossa is divided at the midline by the upward bony prominence of the sella turcica, a part of the sphenoid bone. The middle cranial fossa has several openings for the passage of blood vessels and cranial nerves (see Figure 7.8).Name the bones that make up the walls of the orbit and identify the openings associated with the orbit Figure 7.10 Sphenoid Bone Shown in isolation in (a) superior and (b) posterior views, the sphenoid bone is a single midline bone that forms the anterior walls and floor of the middle cranial fossa. It has a pair of lesser wings and a pair of greater wings. The sella turcica surrounds the hypophyseal fossa. Projecting downward are the medial and lateral pterygoid plates. The sphenoid has multiple openings for the passage of nerves and blood vessels, including the optic canal, superior orbital fissure, foramen rotundum, foramen ovale, and foramen spinosum. Ethmoid Bone The cranium (skull) is the skeletal structure of the head that supports the face and protects the brain. It is subdivided into the facial bones and the brain case, or cranial vault ( Figure 7.3). The facial bones underlie the facial structures, form the nasal cavity, enclose the eyeballs, and support the teeth of the upper and lower jaws. The rounded brain case surrounds and protects the brain and houses the middle and inner ear structures. View this animation to see how a blow to the head may produce a contrecoup (counterblow) fracture of the basilar portion of the occipital bone on the base of the skull. Why may a basilar fracture be life threatening? Facial Bones of the Skull

The lateral portions of the ethmoid bone are located between the orbit and upper nasal cavity, and thus form the lateral nasal cavity wall and a portion of the medial orbit wall. Located inside this portion of the ethmoid bone are several small, air-filled spaces that are part of the paranasal sinus system of the skull. Sutures of the Skull Irregular. Irregular bones have a shape that does not fit the pattern of the long, short, or flat bones. The vertebrae, sacrum, and coccyx of the spine—as well as the sphenoid, ethmoid, and zygomatic bones of the skull—are all irregular bones. The walls of each orbit include contributions from seven skull bones (Figure 14). The frontal bone forms the roof and the zygomatic bone forms the lateral wall and lateral floor. The medial floor is primarily formed by the maxilla, with a small contribution from the palatine bone. The ethmoid bone and lacrimal bone make up much of the medial wall and the sphenoid bone forms the posterior orbit. Each lacrimal bone is a small, rectangular bone that forms the anterior, medial wall of the orbit (see Figure 7.4 and Figure 7.5). The anterior portion of the lacrimal bone forms a shallow depression called the lacrimal fossa, and extending inferiorly from this is the nasolacrimal canal. The lacrimal fluid (tears of the eye), which serves to maintain the moist surface of the eye, drains at the medial corner of the eye into the nasolacrimal canal. This duct then extends downward to open into the nasal cavity, behind the inferior nasal concha. In the nasal cavity, the lacrimal fluid normally drains posteriorly, but with an increased flow of tears due to crying or eye irritation, some fluid will also drain anteriorly, thus causing a runny nose. Inferior Nasal Conchae The Circle of Ancient Iranian Studies, Dec. 10, 2006, 4800-Year-Old Artificial Eyeball Discovered in Burnt City

Figure 11. Lateral Wall of Nasal Cavity. The three nasal conchae are curved bones that project from the lateral walls of the nasal cavity. The superior nasal concha and middle nasal concha are parts of the ethmoid bone. The inferior nasal concha is an independent bone of the skull. The malleus, incus, and stapes—known collectively as the auditory ossicles—are the smallest bones in the body. Found in a small cavity inside of the temporal bone, they serve to transmit and amplify sound from the eardrum to the inner ear. Vertebrae External acoustic meatus (ear canal)—This is the large opening on the lateral side of the skull that is associated with the ear.

A blow to the lateral side of the head may fracture the bones of the pterion. The pterion is an important clinical landmark because located immediately deep to it on the inside of the skull is a major branch of an artery that supplies the skull and covering layers of the brain. A strong blow to this region can fracture the bones around the pterion. If the underlying artery is damaged, bleeding can cause the formation of a hematoma (collection of blood) between the brain and interior of the skull. As blood accumulates, it will put pressure on the brain. Symptoms associated with a hematoma may not be apparent immediately following the injury, but if untreated, blood accumulation will exert increasing pressure on the brain and can result in death within a few hours. Facial Bones of the SkullThe facial bones of the skull form the upper and lower jaws, the nose, nasal cavity and nasal septum, and the orbit. The facial bones include 14 bones, with six paired bones and two unpaired bones. The paired bones are the maxilla, palatine, zygomatic, nasal, lacrimal, and inferior nasal conchae bones. The unpaired bones are the vomer and mandible bones. Although classified with the brain-case bones, the ethmoid bone also contributes to the nasal septum and the walls of the nasal cavity and orbit. Maxillary Bone A view of the lateral skull is dominated by the large, rounded brain case above and the upper and lower jaws with their teeth below ( Figure 7.5). Separating these areas is the bridge of bone called the zygomatic arch. The zygomatic arch is the bony arch on the side of skull that spans from the area of the cheek to just above the ear canal. It is formed by the junction of two bony processes: a short anterior component, the temporal process of the zygomatic bone (the cheekbone) and a longer posterior portion, the zygomatic process of the temporal bone, extending forward from the temporal bone. Thus the temporal process (anteriorly) and the zygomatic process (posteriorly) join together, like the two ends of a drawbridge, to form the zygomatic arch. One of the major muscles that pulls the mandible upward during biting and chewing arises from the zygomatic arch. Mylohyoid line—This bony ridge extends along the inner aspect of the mandibular body (see Figure 7.11). The muscle that forms the floor of the oral cavity attaches to the mylohyoid lines on both sides of the mandible.



  • Fruugo ID: 258392218-563234582
  • EAN: 764486781913
  • Sold by: Fruugo

Delivery & Returns

Fruugo

Address: UK
All products: Visit Fruugo Shop